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1. Introduction

This paper deals with the stability of non-conservative undamped linear systems of the form
M .x þ Kx ¼ 0; where M and K are arbitrary square matrices and the damping matrix is absent.
Sometimes, these systems of ordinary differential equations with asymmetric stiffness matrices are
called non-self-adjoint boundary problems [1].

Theoretical interest in such systems has been stimulated by a number of flutter-related
instability phenomena: instability of tubes conveying the flow of gas or liquid is a classical
example [2]. In aeronautics, an important non-conservative problem can be found in the
instability of wings in air flow. Namely, it consists of the bending-torsion mode of dynamic
instability of aircraft wings in the air flow [3]. Another example of a non-conservative problem is
given by cantilever beams subjected to a follower load. A large amount of work has been done to
study the transition between stability and instability. Zigler [4], among others, produced stability
diagrams in terms of the load versus non-conservative loading parameters for a 2-degree-of-
freedom (d.o.f.) model (inverted double pendulum). His results have been resumed and extended
by many other researchers [5].

The stability analysis of most of the aforesaid non-conservative problems, has been carried out
by eigenvalue calculations. However, when the number of d.o.f. of the system is high (three or
more), it is often impossible to obtain a closed-form solution for the eigenvalue calculation. In the
following sections, a powerful tool for carrying out stability conditions expressed by means of a
set of non-linear inequalities, no matter how high the number of d.o.f. of the system is, will be
shown. Thus, numerical calculation of eigenvalues is avoided.

It is well known that, when inertial and stiffness matrices of an undamped conservative system
are symmetric positive definite, the system is stable in a BIBO sense (also called weakly stable) [6].
In such a case, the system simply vibrates, that is, performs harmonic oscillations about the
equilibrium point.
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On the other hand, in the case of an undamped non-conservative system, instability could
occur. In fact, the system could be either weakly stable, or unstable by flutter, or unstable by
divergence. As it has been previously said, a possible method for studying the stability of these
systems consists in numerically calculating the eigenvalues. Although this method can be easily
employed when the elements of the matrices are numerical values, it is less useful when the
elements of the matrices are expressed by means of functions of some physical parameters. The
main reason is that, in this case, one would desire to express the eigenvalues directly in terms of
the physical parameters, in order to see the effect of the parameters on the stability. Therefore,
closed-form solution of the characteristic equation is required. The solution cannot always be
given in closed form, especially when the degree of the polynomial characteristic equation is high.

Another tool for investigating the stability is the Routh–Hurvitz criterion. Nowadays, this
criterion finds a lot of applications in system theory because it predicts stability without calculating
the eigenvalues. Unfortunately, it cannot be employed to predict the weak stability of undamped
systems as it has been highlighted by Afolabi [7]. The main reason is that the Routh–Hurwitz
criterion gives stability conditions in an asymptotical sense, but it does not predict the weak stability.
To overcome the Routh–Hurwitz criterion’s limits, Afolabi proposed an alternative criterion to
predict the stability of non-conservative linear undamped systems. This criterion gives necessary but
not sufficient conditions for an undamped non-conservative system to be weakly stable.

In this paper, necessary and sufficient conditions will be given for a linear non-conservative
undamped system to be stable, in a BIBO sense (weak stability). An original theorem, which
extends the results obtained by Afolabi, will be introduced. The theorem is a complete tool for
stability analysis. It has three main features: it is complete, in the sense that it gives both necessary
and sufficient conditions as far as weak stability is concerned; it does not require eigenvector
calculation; stability conditions, involving characteristic polynomial coefficients, are given by a set
of non-linear inequalities.

The effectiveness of the method will be shown by means of three illustrative numerical examples.
Such examples aim to give a clear explanation of how to use the theorem in a practical scenario.
They also stress the difference between flutter and divergence instability. Eventually, the theorem
will be employed to study the stability of two linear non-conservative undamped systems that
represent the dynamic behavior of two real mechanical phenomena: the mode-coupling chatter in
machining, and the instability of a set of three cantilever beams subjected to a follower load.

2. Theory

Non-conservative undamped linear systems are mostly expressed in the form

M .x þ Kx ¼ 0; ð1Þ

where M and K are arbitrary real square matrices of order n and x is the state vector. Such a
system is called undamped since the damping matrix is absent.

The characteristic polynomial associated with system (1) has the structure

Ml2 þ K
�� �� ¼ a0l

2n þ a1l
2ðn�1Þ þ?þ an�1l

2 þ an; ð2Þ

where a0; a1;y; an are real coefficients.
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If system (1) was conservative, K and M would be symmetric and positive definite. If so, all
polynomial roots l2

i ði ¼ 1;y; nÞ would be negative real and their square roots li ¼ 7joi; would
be purely imaginary numbers. oi ði ¼ 1;y; nÞ are the natural frequencies of the free vibrations
and j ¼

ffiffiffiffiffiffiffi
�1

p
: As a consequence, the system would be always weakly stable. In such a case, the

system will perform harmonic oscillations about the equilibrium point.
On the other hand, as it has been explained in the introduction, there exist a number of dynamic

systems where K and/or M are not symmetric. The dynamic behavior of such a system can be
classified into three categories [6]:

(a) The system is weakly stable: This case occurs when all roots l2
i are real negative. The system is

dynamically stable in the sense that the motion is harmonic and bounded (BIBO stability).
(b) The system loses stability via divergence: This case occurs when all the l2

i are real numbers and
at least one l2

k > 0: As a consequence, the real positive eigenvalue lk > 0 will give rise to an
aperiodic, exponentially growing motion.

(c) The system loses stability via flutter: This case occurs when at least one of the roots l2
i is

complex. If l2
i is complex, solutions of the eigenproblem occur in two eigenvalues with

positive real part. In fact, if l2
i ¼ ða2

i � o2
i Þ þ jð2aioiÞ is the complex root, where both ai and

oi are real positive, and its conjugate is l2
i ¼ ða2

i � o2
i Þ � jð2aioiÞ; the four associated

eigenvalues are 7ai7joi: Two of these eigenvalues have positive real parts ai; yielding
exponentially growing oscillations. This is called periodic exponential instability or flutter
instability.

It is possible to rewrite polynomial (2) by replacing m ¼ l2: The characteristic equation becomes

f ðmÞ ¼ a0mn þ a1mn�1 þ?þ an�1mþ an ¼ 0: ð3Þ

Polynomial (3) is referred to as a reduced polynomial in the variable m:
Essentially, the whole theory is based on the consideration that systems (1) is weakly stable if

and only if all the roots of the reduced polynomial (3) are real and non-positive.
There are different methods to check whether all the roots of a polynomial are real. In this

paper, the method proposed by Yang [8] will be employed and briefly reviewed as follows.
Some useful definitions are given, which differ slightly from Yang’s ones.

Definition 1. Given a polynomial f ðmÞ ¼ a0mn þ a1mn�1 þ?þ an�1mþ an; the following (2n � 2n)
matrix is called discriminant matrix:

Dðf Þ ¼

a0 a1 a2 ? an 0

0 na0 ðn � 1Þa1 ? an�1 0

a0 a1 ? an�1 an 0

na0 ? 2an�1 an�1

? ?

? ?

0 a0 a1 ? an

0 na0 ? an�1

2
666666666666664

3
777777777777775

: ð4Þ
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The discriminant matrix in turn can be thought of as associated with the undamped system or
with the characteristic polynomial of the undamped system.

Definition 2. The sequence

fD1;y;Dng; ð5Þ

where Di is the determinant of the sub-matrix of the discriminant matrix formed by the first 2i
rows and 2i columns, is called a discriminant sequence of the polynomial f ðmÞ ¼ a0mn þ a1mn�1 þ
?þ an�1mþ an: Sometimes, the Di’s are called sub-discriminants or principal sub-resuetants.

Theorem 1. Given a polynomial f ðmÞ ¼ a0mn þ a1mn�1 þ?þ an�1mþ an; with real coefficients, a
necessary and sufficient condition for the polynomial to have only real roots, is that the elements of

the discriminant sequence are all non-negative

DiX0; i ¼ 1;y; n: ð6Þ

The proof can be found in Yang [8] or Grantmacher [9]. Note that if just one sub-discriminant
Di was negative, at least one root of the reduced polynomial associated to the system would be
complex. As a consequence, the system would have an eigenvalue li with positive real part and
non-null complex part. Therefore, the system would lose stability via flutter.

On the contrary, if all DiX0; in order to complete the stability analysis, it is necessary to check
for the negativeness of all the roots of the reduced polynomial.

This test can be carried out by means of Theorem 2. In conclusion, Theorem 1 gives sufficient
conditions for an undamped system to be weakly stable and necessary and sufficient conditions
for an undamped system to loose stability via flutter.

Theorem 2. A reduced polynomial f ðmÞ ¼ a0mn þ a1mn�1 þyþ an�1mþ an with real coefficient is

given. Suppose that all the roots of the reduced polynomial are real (roots’ realness can be verified by
means of Theorem 1). A necessary and sufficient condition for all the roots of the reduced polynomial

to be negative is that polynomial coefficients are either all non-positive or all non-negative.

Proof of necessity. The polynomial can be factorized as follows:

a0mn þ a1mn�1 þ?þ an�1mþ an ¼ a0

Yn

i¼1

ðm� miÞ ¼ 0; ð7Þ

where mi are the roots of the reduced polynomial. Each coefficient of the polynomial can be
expressed by sums and products of positive terms �miX0 multiplied by the coefficient a0:
Therefore, the coefficients are all non-positive or all non-negative. The sign of the coefficients
depends on the sign of a0:

Proof of sufficiency. If all the coefficients of the polynomial are non-negative (with at least one
coefficient positive), it yields

f ðmÞ > 0; 8m > 0:
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On the other hand, if all the coefficients of the polynomial are non-positive (with at least one
coefficient negative), it yields

f ðmÞ > 0; 8m > 0:

In either cases, f ðmÞa0; 8m > 0: Therefore, the polynomial does not have positive real roots.

Note that the hypothesis of Theorem 2 (all real roots) requires that DiX0: Combining
Theorems 1 and 2, the following final theorem on the weak stability can be introduced. The proof
is a direct consequence of the first two theorems:

Theorem. Consider a linear undamped system. Let its polynomial characteristic be a0l
2n þ

a1l
2n�1 þ?þ an�1l

2 þ an and its reduced polynomial be f ðmÞ ¼ a0mn þ a1mn�1 þ?þ an�1mþ an:
A necessary and sufficient condition for the system to be weakly stable is that all the elements of the

discriminant sequence of the reduced polynomial are non-negative and that all the coefficients of the
polynomial are all non-positive or all non-negative. The results are summarized by means of Table 1.

3. Examples

The proposed method will be illustrated by means of some numerical examples. The three
examples show how the stability of undamped systems can be studied without calculating the
roots of the characteristic polynomial. Moreover, Examples 2 and 3 provide evidence that the
method can be employed to determine the kind of instability: divergence and flutter.

Example 1. Suppose that the characteristic polynomial of an undamped system is

f ðlÞ ¼ l6 þ 6l4 þ 11l2 þ 6 ¼ 0:

Theorems 1 and 2 can be applied to the following reduced polynomial:

gðmÞ ¼ f ð
ffiffiffi
m

p
Þ ¼ m3 þ 6m2 þ 11mþ 6 ¼ 0:

Table 1

Stability analysis of an undamped non-conservative system by means of sub-discriminants Di and polynomial

coefficients ai

Theorem 1 Theorem 2

aip0; i ¼ 1;y; n (ai > 0; ajo0; iaj

or

aiX0; i ¼ 1;y; n

DiX0; i ¼ 1;y; n Weak stability Divergence

mi real, mip0 mi real, (mi > 0

li pure complex (li with positive real part and null complex part

At least one Dio0 Flutter Flutter

(mi complex mi real, mip0

(li with positive real part li pure complex
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Its discriminant matrix is

DðgÞ ¼

1 6 11 6 0 0

0 3 12 11 0 0

0 1 6 11 6 0

0 0 3 12 11 0

0 0 1 6 11 6

0 0 0 3 12 11

2
6666666664

3
7777777775
:

Computing the discriminant sequence, it yields

D1 ¼ det
1 6

0 3

" #
¼ 3;D2 ¼ det

1 6 11 6

0 3 12 11

0 1 6 11

0 0 3 12

2
6664

3
7775 ¼ 6;D3 ¼ det DðgÞ½ � ¼ 4

8>>><
>>>:

9>>>=
>>>;
:

Since all the elements of the discriminant sequence are positive, the roots of the polynomial are
real according to Theorem 1. Moreover, since all the coefficients of the polynomial are positive, all
the roots of the reduced polynomial are also negative, according to Theorem 2. In conclusion, the
undamped system is weakly stable. This conclusion is in accordance with the roots of the reduced
polynomial

m1 ¼ �3;m2 ¼ �2;m3 ¼ �1

that are all negative.

Example 2. Suppose that the characteristic polynomial of an undamped system is

f ðlÞ ¼ l6 þ 6l4 þ 11l2 þ 7 ¼ 0 ) gðmÞ ¼ f ð
ffiffiffiffiffi
mÞ

p
¼ m3 þ 6m2 þ 11mþ 7 ¼ 0:

The discrimination matrix is

DðgÞ ¼

1 6 11 7 0 0

0 3 12 11 0 0

0 1 6 11 7 0

0 0 3 12 11 0

0 0 1 6 11 7

0 0 0 3 12 11

2
6666666664

3
7777777775
;

while the discriminant sequence is

fD1 ¼ 3;D2 ¼ 6;D3 ¼ �23g:

Since an element of the discriminant sequence is negative, it can be immediately inferred that
the system loses stability via flutter (see Theorem 1). This conclusion is in accordance with the
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roots of the reduced polynomial, since two of them are complex:

m1 ¼ �3:32472; m2 ¼ �1:33764 � i0:56228; m3 ¼ �1:33764 þ i0:56228:

Example 3. Suppose that the characteristic polynomial of an undamped system is

f ðlÞ ¼ l6 þ 1:5l4 � 0:25l2 � 0:375 ¼ 0 ) gðmÞ ¼ f ð
ffiffiffi
m

p
Þ ¼ m3 þ 1:5m2 � 0:25m� 0:375 ¼ 0:

The discriminant matrix is

DðgÞ ¼

1 1:5 �0:25 �0:375 0 0

0 3 3 �0:25 0 0

0 1 1:5 �0:25 �0:375 0

0 0 3 3 �0:25 0

0 0 1 1:5 �0:25 �0:375

0 0 0 3 3 �0:25

2
6666666664

3
7777777775
;

while the discriminant sequence

fD1 ¼ 3;D2 ¼ 6;D3 ¼ 4g:

As in Example 1, since all the elements of the discriminant sequence are positive, the roots
of the reduced polynomial are real (see Theorem 1). For Theorem 2, since the two coefficients
of the polynomial are negative, the reduced polynomial has a positive real root. It can be
inferred that the undamped system associated with the reduced polynomial loses stability via
divergence. This conclusion is in accordance with the roots of the reduced polynomial that are all
real but one:

m1 ¼ �1:5; m2 ¼ �0:5; m3 ¼ 0:5:

Example 4. The following example comes from the problem of self-excited vibrations that occur
during many machining operations [10]. Gasparetto studied the cutting process by means of a
linear 2-d.o.f. dynamic model, namely one of the form M .x þ Kx ¼ 0; where

M ¼
M 0

0 M

" #
; K ¼

kx þ k sin ðgÞ cos ðgÞ �k cos2 ðgÞ

k sin2 ðgÞ ky � k sin ðgÞ cos ðgÞ

" #
;

where M is the cutting tool mass, Kx; Ky are stiffness coefficients associated with the machine
structure, and k; g are parameters associated with the cutting process.

Note that the stiffness matrix is asymmetric. Gasparetto carried out the stability conditions by
evaluating the eigenvalues and eigenvectors of the system. It will be shown how to lead to the
same stability conditions, while avoiding eigenvalue calculation.
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The characteristic polynomial of the undamped system and the reduced polynomial are,
respectively,

f ðlÞ ¼ M2l4 þ Mðkx þ kyÞl
2 þ kxky � kðkx � kyÞ sinðgÞ cosðgÞ ¼ 0;

gðmÞ ¼ f ð
ffiffiffi
m

p
Þ ¼ a0m2 þ a1mþ a2

¼ M2m2 þ Mðkx þ kyÞmþ kxky � kðkx � kyÞsin ðgÞcos ðgÞ ¼ 0:

The discriminant matrix is

DðgÞ ¼

M2 Mðkx þ kyÞ kxky � kðkx � kyÞ sinðgÞ cosðgÞ 0

0 2M2 Mðkx þ kyÞ 0

0 M2 Mðkx þ kyÞ kxky � kðkx � kyÞ sinðgÞ cosðgÞ

0 0 2M2 Mðkx þ kyÞ

2
6664

3
7775:

Computing the discriminant sequence, it yields

D1 ¼ 2M4; D2 ¼ ðkx � kyÞðkx � ky þ 2k sinð2gÞÞ:

All the elements of the discriminant sequence as well as the reduced polynomial coefficients
have to be positive, in order for the system to be weakly stable. Note that a0 > 0; a1 > 0; D1 > 0
Therefore, the only two necessary and sufficient conditions for stability are

a0X0 3 kxky � kðkx � kyÞ sinðgÞ cosðgÞX0;

D2X0 3 ðkx � kyÞðkx � ky þ 2k sinð2gÞÞX0:

These conditions agree with the conditions carried out by Gasparetto. It is reminded that
Gasparetto carried out the conditions by eigenvalue calculations.

Example 5. Consider the system of three beams of Fig. 1. Three beams are connected to each
other by means of friction-free revolute joints and torsional springs whose stiffness constant is k:
Beams are assumed to be light and rigid. Each beam is l long. In addition, small angular
displacements are assumed. As a consequence, the approximations sinðW1ÞDW1; cosðW1ÞD1 are
adopted. Only three masses are taken into account, namely 2m; 2m and m: They are located at
each revolute joint. The last beam is subjected to a tangential follower load PF and to a constant
direction load PC at its free end. For the sake of simplicity, the parameters P ¼ PC þ PF and
a ¼ PF=P are introduced. a is referred to as the non-conservative loading parameter. As a varies,
divergence instability or flutter instability can occur.

The dynamic equations are derived as follows. All the forces acting on the system are
schematized in Fig. 1, inertial forces included. Momentum balances with respect to points A
(considering the external forces acting on the three beams), B (considering the external forces
acting only on the last two beams) and C (considering the external forces acting only on the
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last beam) are (see Fig. 1)

� mlð .W1 þ .W2 þ .W3Þ3l � 2mlð .W1 þ .W2Þ2l � 2ml .W1l � kW1

þ ð1 � aÞPlðW1 þ W2 þ W3Þ � aPlð�W1 � W2 þ 2W3Þ ¼ 0;

� mlð .W1 þ .W2 þ .W3Þ2l � 2mlð .W1 þ .W2Þl � kðW2 � W1Þ

þ ð1 � aÞPlðW2 þ W3Þ � aPlðW3 � W2Þ ¼ 0;

� mlð .W1 þ .W2 þ .W3Þl � kðW3 � W2Þ þ ð1 � aÞPlW3 ¼ 0:

Using a matrix notation

M

.W1

.W2

.W3

8><
>:

9>=
>;þ K

W1

W2

W3

8><
>:

9>=
>; ¼ 0;

where

M ¼ ml2
9 7 3

4 4 2

1 1 1

2
64

3
75; K ¼

ðk � PlÞ �Pl Plð3a� 1Þ

�k ðk � PlÞ Plð2a� 1Þ

0 �k Plða� 1Þ þ k

2
64

3
75:

Fig. 1. Dynamic model of the system subjected to a follower load and a constant direction load.
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The reduced polynomial of the system is
gðmÞ ¼ f ð

ffiffiffi
m

p
Þ ¼ t0m3 þ t1m2 þ t2mþ t3 ¼ 0;

where the parameters
t0 ¼ ð4l6m3Þ=k3;

t1 ¼ ð2l4m2ð13 þ 2ða� 3ÞbÞÞ=k2;

t2 ¼ ðl2mð26 þ 18ða� 2Þbþ ð9 � 6aÞb2ÞÞ=k;

t3 ¼ 1 þ ða� 1Þð6b� 5b2 þ b3Þ

are the polynomial coefficients and b ¼ Pl=k is termed the critical load.
Using the new notation, the discriminant matrix becomes

DðgÞ ¼

t0 t1 t2 t3 0 0

0 3t20 2t1 t2 0 0

0 t0 t1 t2 t3 0

0 0 3t20 2t1 t2 0

0 0 t0 t1 t2 t3

0 0 0 3t20 2t1 t2

2
6666666664

3
7777777775
;

while the discriminant sequence is

D1 ¼ 2t21; D2 ¼ t20½ð6t0 � 4Þt21 þ 3ð1 � 3t0Þt20t2�;

D3 ¼ �t20½ð2 � 3t0Þ t21t22 þ 4ð3t0 � 2Þ t31t3 þ 18ð1 � 2t0Þt20 t1t2t3 þ t0ðð1 � 3t20Þt
2
2 þ 27t40t23Þ�:

Now, the stability can be analyzed with respect to the parameters a and b in the range (�1, 5) of
the parameter a and (�4, 6) of the parameter b: The results are represented by plots in Fig. 2. The
first two plots of Fig. 2 show the regions where the sub-discriminants D2 and D3 are positive. Note
that D1 is always positive for each value of a and b: Therefore, it is not necessary to represent the
diagram of the region where D1 is positive. Also, the first plot shows that D2 is positive for
aA �1; 5½ � and bA �4; 6½ �: The second plot shows that there exists a region where D3 is negative.
According to Theorem 1, when a and b belong to that region, the reduced polynomial has at least
a complex root. Therefore, the system has at least an eigenvalue with positive real part: the system
will be unstable and the system will lose stability via flutter. Outside that region, all the roots of
the reduced polynomial are real.

Stability analysis will be completed by applying Theorem 2. The system will be weakly stable if
and only if all the reduced polynomial coefficients ti are non-negative. Note that t0 is always
positive. Therefore it is necessary to study only the sign of t1; t2 and t3: Plots on the second row of
Fig. 2 represent the regions where t1; t2 and t3 are positive. In conclusion, according to Table 1,
the only region of weak stability is given by the intersection of the regions where t1; t2; t3; D2 and
D3 are positive. Such a region is represented by the bottom plot of Fig. 2. The diagram perfectly
agrees with the one obtained by Gasparini et al. [5]. Remember that diagrams obtained in this
paper have been carried out by means of analytical equations, whilst the ones obtained by
Gasparini are by means of numerical eigenvalue calculations.
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4. Conclusions

A new theorem for the weak stability analysis of linear undamped systems has been introduced.
The theorem enables one to determine the weak stability of an undamped linear non-symmetric
system without eigenvalue computation. In fact, this criterion does for undamped systems what
Routh–Hurvitz criterion does for linear dynamic systems with damping. Moreover, this criterion
enables one to classify the kind of instability: divergence or flutter. Eventually several examples
show the effectiveness of the theorem.
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